ASSIGNMENT OF THE 13C NMR SPECTRUM OF QUINOVIC ACID

GHULAM A. MIANA and HASSAN M. G. AL-HAZIMI

Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia

(Revised received 8 April 1986)

Key Word Index:-13C NMR spectra; triterpenes; quinovic acid; methyl quinovate; azizic acid; manevalic acid.

Abstract—The ¹³C NMR spectra of the triterpene quinovic acid and its methyl ester have been assigned. The structures of azizic and manevalic acids should be revised.

The ¹³C NMR spectra of triterpene acids of the urs-12-ene (ursolic acid, 1) and olean-12-ene (oleanolic acid, 2) types have been well documented. Doddrell et al. [1] reported the stereochemical dependence of ¹³C chemical shifts in the two series, and assigned chemical shifts for C-12, C-13 and for hydroxylated carbons. They found that ¹³C NMR spectroscopy is the most precise tool for the purpose of distinguishing between the two types, which is not easy otherwise. Tori and co-workers [2, 3] gave complete assignments of the ¹³C signals of several urs-12-enes and olean-12-enes.

¹³C NMR spectra can be used to distinguish between the two types by observing the chemical shift of C-12 and particularly that of C-13. In general, C-12 is deshielded (-2 ppm) and C-13 shielded (-5 ppm) in the urs-12-ene series and appears at 140 ppm, whereas the latter resonates at 144-145 ppm in the olean-12-ene series. The difference between the two values has been rationalized by the presence of a 19 β (equatorial) methyl group which is in close proximity to the double bond (γ and γ' to C-13 and C-12, respectively) in the urs-12-ene series, thus effecting sterically the chemical shifts of these carbons. Introduction of a 19x-(axial)hydroxyl group was found to have a minor effect on the chemical shifts of C-12 and C-13, but the 19β -hydroxyl group has the same effect as the methyl group. The presence of a carboxyl group at C-14 (y and y' to C-13 and C-12, respectively) has a marked effect on the chemical shift. Thus the chemical shifts of C-12 and C-13 in 3 in the urs-12-ene series are at 128.5 and 133.5 ppm, respectively [1], while they are close to 126 and 137 ppm for 4, 5 and 6 in the olean-12-ene series [4].

We report herein the ¹³C NMR spectra of quinovic acid (7) and dimethyl quinovate (8); this is the first report giving the complete assignment of a triterpene acid of the ursolic type bearing a COOH at C-14. Assignment of the carbon chemical shifts in the ¹³C NMR spectra was made by the use of the single frequency off-resonance decoupling technique [5, 6], application of known chemical shift rules due to hydroxyl and acetoxyl substituent groups, and steric effects [1, 5, 7, 8], as well as by comparison with the ¹³C NMR spectral data of known ursene and oleanene derivatives [9, 10]. The chemical shifts of 7 (Table 1), especially those of C-12 and C-13, which resonate at 128.6 and 133.7 ppm, respectively, clearly corroborate the results and conclusions of Doddrell et al. [1].

Table 1. 13C NMR chemical shifts of compounds 7 and 8

Carbon No.	7	8	Carbon No.	7	8
1	30.02	20.60	16	26.24	24.66
	39.02	38.60	16	25.24	24.65
2	26.06	25.13	17	47.02	48.49
3	77.80	78.70	18	54.60	53.72
4	39.02	38.74	19	37.10	36.90
5	55.48	56.12	20	37.20	36.90
6	18.72	18.25	21	30.35	29.80
7	36.87	32.00	22	36.87	35.98
8	39.71	39. 7	23	27.82	27.18
9	48.43	47.30	24	16.08	16.30
10	37.20	37.05	25	16.40	16.30
11	23.13	22.77	26	18.02	15.60
12	128.60	129.28	27	177.70	175.40
13	133.70	131.98	28	179.88	177.80
14	56.47	51.48	29	18.72	17.00
15	28.80	28.06	30	21.19	21.00
			COOMe		51.10,
			_		51.40

Application of these results to azizic acid (9) and manevalic acid (10) [11] (Table 2) clearly shows that the carboxyl group cannot be present at C-14 because the

Table 2. Some ¹³C NMR spectral data of compounds 4-6 and 9-13

Compound	C-12	C-13	
4	126.0	137.6	
5	126.8	136.1	
6	125.5	137.5	
9	123.0	143.1	
10	122.3	143.8	
11*	125.1	138.0	
12†	122.8	144.7	
13‡	122.8	142.8	

^{*}Data taken from ref. [12].

[†]Data taken from ref. [13].

[‡]Data taken from ref. [14].

chemical shifts of C-12 and C-13 in both 9 and 10 have normal values of the oleanolic acid type as in 11-13 (Table 2) and show no shielding effect of a carboxyl group. In view of this finding, we believe that the structures of 9 and 10 should be revised.

EXPERIMENTAL

Quinovic acid was isolated from Fagonia cretica as described earlier in ref. [15], and its dimethyl ester was prepared in the same way. Quinovic acid was fully characterized by spectroscopic techniques by comparing the ¹H NMR and mass spectra with those described recently in the literature [16].

The 13 C NMR spectra were obtained in CDCl₃ (pyridine- d_5) for quinovic acid at 25 MHz with TMS as internal standard.

Acknowledgement—We thank the Research Centre, College of Science, King Saud University for financial support (grant No. Chem/1405/04).

REFERENCES

- Doddrell, D. M., Khong, P. W. and Lewis, K. G. (1974) Tetrahedron Letters 2381.
- 2. Soe, S., Tomita, Y. and Tori, K. (1975) Tetrahedron Letters 7.

- Soe, S., Yomita, Y. and Tori, K. (1975) J. Chem. Soc. Chem. Commun. 954.
- Chen, T. K., Ales, D. C., Baenziger, N. C. and Wiemer, D. F. (1983) J. Org. Chem. 48, 3525.
- Levy, G. C., Lichter, R. L. and Nelson, G. L. (1980) Carbon-13 Nuclear Magnetic Resonance Spectroscopy. Wiley Interscience, New York.
- Stothers, J. B. (1972) ¹³C NMR Spectroscopy. Academic Press, New York.
- Grover, S. H., Guthrie, J. P., Stothers, J. B. and Tan, C. T. (1973) J. Magn. Reson. 10, 227.
- 8. Grover, S. H. and Stothers, J. B. (1974) Can. J. Chem. 52, 870.
- 9. Kizu, H. and Tomimori, T. (1982) Chem. Pharm. Bull. 30, 859.
- 10. Harkor, S., Razdan, T. K. and Waight, E. S. (1984) Phyto-

- chemistry 23, 2893.
- Dawidar, A. A., Reisch, J. and Amer, M. (1979) Chem. Pharm. Bull. 27, 2938.
- Nakanishi, K., Goto, T., Ito, S., Natori, S. and Nozoe, S. (eds) (1983) Natural Products Chemistry, Vol. III, pp. 179–180. Oxford University Press, Oxford.
- Ricca, G. S., Danieli, B., Palmisano, G., Duddeck, H. and Elgamal, M. H. A. (1978) Org. Magn. Reson. 11, 163.
- Patra, A., Mitra, A. K., Ghosh, S., Ghosh, A. and Barua, A. K. (1981) Org. Magn. Reson. 15, 399.
- Hussain, W., Hussain, S. F., Ikram, M. and Warsi, S. A. (1966) Pakistan J. Sci. Ind. Res. 9, 269.
- Adeoye, A. O. and Waigh, R. D. (1983) Phytochemistry 22, 975.